Setting up a nested KVM guest for developing & testing PCI device assignment with NUMA

Posted: February 16th, 2017 | Filed under: Coding Tips, Fedora, libvirt, OpenStack, Virt Tools | Tags: , , , , , | 1 Comment »

Over the past few years OpenStack Nova project has gained support for managing VM usage of NUMA, huge pages and PCI device assignment. One of the more challenging aspects of this is availability of hardware to develop and test against. In the ideal world it would be possible to emulate everything we need using KVM, enabling developers / test infrastructure to exercise the code without needing access to bare metal hardware supporting these features. KVM has long has support for emulating NUMA topology in guests, and guest OS can use huge pages inside the guest. What was missing were pieces around PCI device assignment, namely IOMMU support and the ability to associate NUMA nodes with PCI devices. Co-incidentally a QEMU community member was already working on providing emulation of the Intel IOMMU. I made a request to the Red Hat KVM team to fill in the other missing gap related to NUMA / PCI device association. To do this required writing code to emulate a PCI/PCI-E Expander Bridge (PXB) device, which provides a light weight host bridge that can be associated with a NUMA node. Individual PCI devices are then attached to this PXB instead of the main PCI host bridge, thus gaining affinity with a NUMA node. With this, it is now possible to configure a KVM guest such that it can be used as a virtual host to test NUMA, huge page and PCI device assignment integration. The only real outstanding gap is support for emulating some kind of SRIOV network device, but even without this, it is still possible to test most of the Nova PCI device assignment logic – we’re merely restricted to using physical functions, no virtual functions. This blog posts will describe how to configure such a virtual host.

First of all, this requires very new libvirt & QEMU to work, specifically you’ll want libvirt >= 2.3.0 and QEMU 2.7.0. We could technically support earlier QEMU versions too, but that’s pending on a patch to libvirt to deal with some command line syntax differences in QEMU for older versions. No currently released Fedora has new enough packages available, so even on Fedora 25, you must enable the “Virtualization Preview” repository on the physical host to try this out – F25 has new enough QEMU, so you just need a libvirt update.

# curl --output /etc/yum.repos.d/fedora-virt-preview.repo https://fedorapeople.org/groups/virt/virt-preview/fedora-virt-preview.repo
# dnf upgrade

For sake of illustration I’m using Fedora 25 as the OS inside the virtual guest, but any other Linux OS will do just fine. The initial task is to install guest with 8 GB of RAM & 8 CPUs using virt-install

# cd /var/lib/libvirt/images
# wget -O f25x86_64-boot.iso https://download.fedoraproject.org/pub/fedora/linux/releases/25/Server/x86_64/os/images/boot.iso
# virt-install --name f25x86_64  \
    --file /var/lib/libvirt/images/f25x86_64.img --file-size 20 \
    --cdrom f25x86_64-boot.iso --os-type fedora23 \
    --ram 8000 --vcpus 8 \
    ...

The guest needs to use host CPU passthrough to ensure the guest gets to see VMX, as well as other modern instructions and have 3 virtual NUMA nodes. The first guest NUMA node will have 4 CPUs and 4 GB of RAM, while the second and third NUMA nodes will each have 2 CPUs and 2 GB of RAM. We are just going to let the guest float freely across host NUMA nodes since we don’t care about performance for dev/test, but in production you would certainly pin each guest NUMA node to a distinct host NUMA node.

    ...
    --cpu host,cell0.id=0,cell0.cpus=0-3,cell0.memory=4096000,\
               cell1.id=1,cell1.cpus=4-5,cell1.memory=2048000,\
               cell2.id=2,cell2.cpus=6-7,cell2.memory=2048000 \
    ...

QEMU emulates various different chipsets and historically for x86, the default has been to emulate the ancient PIIX4 (it is 20+ years old dating from circa 1995). Unfortunately this is too ancient to be able to use the Intel IOMMU emulation with, so it is neccessary to tell QEMU to emulate the marginally less ancient chipset Q35 (it is only 9 years old, dating from 2007).

    ...
    --machine q35

The complete virt-install command line thus looks like

# virt-install --name f25x86_64  \
    --file /var/lib/libvirt/images/f25x86_64.img --file-size 20 \
    --cdrom f25x86_64-boot.iso --os-type fedora23 \
    --ram 8000 --vcpus 8 \
    --cpu host,cell0.id=0,cell0.cpus=0-3,cell0.memory=4096000,\
               cell1.id=1,cell1.cpus=4-5,cell1.memory=2048000,\
               cell2.id=2,cell2.cpus=6-7,cell2.memory=2048000 \
    --machine q35

Once the installation is completed, shut down this guest since it will be necessary to make a number of changes to the guest XML configuration to enable features that virt-install does not know about, using “virsh edit“. With the use of Q35, the guest XML should initially show three PCI controllers present, a “pcie-root”, a “dmi-to-pci-bridge” and a “pci-bridge”

<controller type='pci' index='0' model='pcie-root'/>
<controller type='pci' index='1' model='dmi-to-pci-bridge'>
  <model name='i82801b11-bridge'/>
  <address type='pci' domain='0x0000' bus='0x00' slot='0x1e' function='0x0'/>
</controller>
<controller type='pci' index='2' model='pci-bridge'>
  <model name='pci-bridge'/>
  <target chassisNr='2'/>
  <address type='pci' domain='0x0000' bus='0x01' slot='0x00' function='0x0'/>
</controller>

PCI endpoint devices are not themselves associated with NUMA nodes, rather the bus they are connected to has affinity. The default pcie-root is not associated with any NUMA node, but extra PCI-E Expander Bridge controllers can be added and associated with a NUMA node. So while in edit mode, add the following to the XML config

<controller type='pci' index='3' model='pcie-expander-bus'>
  <target busNr='180'>
    <node>0</node>
  </target>
  <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/>
</controller>
<controller type='pci' index='4' model='pcie-expander-bus'>
  <target busNr='200'>
    <node>1</node>
  </target>
  <address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/>
</controller>
<controller type='pci' index='5' model='pcie-expander-bus'>
  <target busNr='220'>
    <node>2</node>
  </target>
  <address type='pci' domain='0x0000' bus='0x00' slot='0x04' function='0x0'/>
</controller>

It is not possible to plug PCI endpoint devices directly into the PXB, so the next step is to add PCI-E root ports into each PXB – we’ll need one port per device to be added, so 9 ports in total. This is where the requirement for libvirt >= 2.3.0 – earlier versions mistakenly prevented you adding more than one root port to the PXB

<controller type='pci' index='6' model='pcie-root-port'>
  <model name='ioh3420'/>
  <target chassis='6' port='0x0'/>
  <alias name='pci.6'/>
  <address type='pci' domain='0x0000' bus='0x03' slot='0x00' function='0x0'/>
</controller>
<controller type='pci' index='7' model='pcie-root-port'>
  <model name='ioh3420'/>
  <target chassis='7' port='0x8'/>
  <alias name='pci.7'/>
  <address type='pci' domain='0x0000' bus='0x03' slot='0x01' function='0x0'/>
</controller>
<controller type='pci' index='8' model='pcie-root-port'>
  <model name='ioh3420'/>
  <target chassis='8' port='0x10'/>
  <alias name='pci.8'/>
  <address type='pci' domain='0x0000' bus='0x03' slot='0x02' function='0x0'/>
</controller>
<controller type='pci' index='9' model='pcie-root-port'>
  <model name='ioh3420'/>
  <target chassis='9' port='0x0'/>
  <alias name='pci.9'/>
  <address type='pci' domain='0x0000' bus='0x04' slot='0x00' function='0x0'/>
</controller>
<controller type='pci' index='10' model='pcie-root-port'>
  <model name='ioh3420'/>
  <target chassis='10' port='0x8'/>
  <alias name='pci.10'/>
  <address type='pci' domain='0x0000' bus='0x04' slot='0x01' function='0x0'/>
</controller>
<controller type='pci' index='11' model='pcie-root-port'>
  <model name='ioh3420'/>
  <target chassis='11' port='0x10'/>
  <alias name='pci.11'/>
  <address type='pci' domain='0x0000' bus='0x04' slot='0x02' function='0x0'/>
</controller>
<controller type='pci' index='12' model='pcie-root-port'>
  <model name='ioh3420'/>
  <target chassis='12' port='0x0'/>
  <alias name='pci.12'/>
  <address type='pci' domain='0x0000' bus='0x05' slot='0x00' function='0x0'/>
</controller>
<controller type='pci' index='13' model='pcie-root-port'>
  <model name='ioh3420'/>
  <target chassis='13' port='0x8'/>
  <alias name='pci.13'/>
  <address type='pci' domain='0x0000' bus='0x05' slot='0x01' function='0x0'/>
</controller>
<controller type='pci' index='14' model='pcie-root-port'>
  <model name='ioh3420'/>
  <target chassis='14' port='0x10'/>
  <alias name='pci.14'/>
  <address type='pci' domain='0x0000' bus='0x05' slot='0x02' function='0x0'/>|
</controller>

Notice that the values in ‘bus‘ attribute on the <address> element is matching the value of the ‘index‘ attribute on the <controller> element of the parent device in the topology. The PCI controller topology now looks like this

pcie-root (index == 0)
  |
  +- dmi-to-pci-bridge (index == 1)
  |    |
  |    +- pci-bridge (index == 2)
  |
  +- pcie-expander-bus (index == 3, numa node == 0)
  |    |
  |    +- pcie-root-port (index == 6)
  |    +- pcie-root-port (index == 7)
  |    +- pcie-root-port (index == 8)
  |
  +- pcie-expander-bus (index == 4, numa node == 1)
  |    |
  |    +- pcie-root-port (index == 9)
  |    +- pcie-root-port (index == 10)
  |    +- pcie-root-port (index == 11)
  |
  +- pcie-expander-bus (index == 5, numa node == 2)
       |
       +- pcie-root-port (index == 12)
       +- pcie-root-port (index == 13)
       +- pcie-root-port (index == 14)

All the existing devices are attached to the “pci-bridge” (the controller with index == 2). The devices we intend to use for PCI device assignment inside the virtual host will be attached to the new “pcie-root-port” controllers. We will provide 3 e1000 per NUMA node, so that’s 9 devices in total to add

<interface type='user'>
  <mac address='52:54:00:7e:6e:c6'/>
  <model type='e1000e'/>
  <address type='pci' domain='0x0000' bus='0x06' slot='0x00' function='0x0'/>
</interface>
<interface type='user'>
  <mac address='52:54:00:7e:6e:c7'/>
  <model type='e1000e'/>
  <address type='pci' domain='0x0000' bus='0x07' slot='0x00' function='0x0'/>
</interface>
<interface type='user'>
  <mac address='52:54:00:7e:6e:c8'/>
  <model type='e1000e'/>
  <address type='pci' domain='0x0000' bus='0x08' slot='0x00' function='0x0'/>
</interface>
<interface type='user'>
  <mac address='52:54:00:7e:6e:d6'/>
  <model type='e1000e'/>
  <address type='pci' domain='0x0000' bus='0x09' slot='0x00' function='0x0'/>
</interface>
<interface type='user'>
  <mac address='52:54:00:7e:6e:d7'/>
  <model type='e1000e'/>
  <address type='pci' domain='0x0000' bus='0x0a' slot='0x00' function='0x0'/>
</interface>
<interface type='user'>
  <mac address='52:54:00:7e:6e:d8'/>
  <model type='e1000e'/>
  <address type='pci' domain='0x0000' bus='0x0b' slot='0x00' function='0x0'/>
</interface>
<interface type='user'>
  <mac address='52:54:00:7e:6e:e6'/>
  <model type='e1000e'/>
  <address type='pci' domain='0x0000' bus='0x0c' slot='0x00' function='0x0'/>
</interface>
<interface type='user'>
  <mac address='52:54:00:7e:6e:e7'/>
  <model type='e1000e'/>
  <address type='pci' domain='0x0000' bus='0x0d' slot='0x00' function='0x0'/>
</interface>
<interface type='user'>
  <mac address='52:54:00:7e:6e:e8'/>
  <model type='e1000e'/>
  <address type='pci' domain='0x0000' bus='0x0e' slot='0x00' function='0x0'/>
</interface>

Note that we’re using the “user” networking, aka SLIRP. Normally one would never want to use SLIRP but we don’t care about actually sending traffic over these NICs, and so using SLIRP avoids polluting our real host with countless TAP devices.

The final configuration change is to simply add the Intel IOMMU device

<iommu model='intel'/>

It is a capability integrated into the chipset, so it does not need any <address> element of its own. At this point, save the config and start the guest once more. Use the “virsh domifaddrs” command to discover the IP address of the guest’s primary NIC and ssh into it.

# virsh domifaddr f25x86_64
 Name       MAC address          Protocol     Address
-------------------------------------------------------------------------------
 vnet0      52:54:00:10:26:7e    ipv4         192.168.122.3/24

# ssh root@192.168.122.3

We can now do some sanity check that everything visible in the guest matches what was enabled in the libvirt XML config in the host. For example, confirm the NUMA topology shows 3 nodes

# dnf install numactl
# numactl --hardware
available: 3 nodes (0-2)
node 0 cpus: 0 1 2 3
node 0 size: 3856 MB
node 0 free: 3730 MB
node 1 cpus: 4 5
node 1 size: 1969 MB
node 1 free: 1813 MB
node 2 cpus: 6 7
node 2 size: 1967 MB
node 2 free: 1832 MB
node distances:
node   0   1   2 
  0:  10  20  20 
  1:  20  10  20 
  2:  20  20  10 

Confirm that the PCI topology shows the three PCI-E Expander Bridge devices, each with three NICs attached

# lspci -t -v
-+-[0000:dc]-+-00.0-[dd]----00.0  Intel Corporation 82574L Gigabit Network Connection
 |           +-01.0-[de]----00.0  Intel Corporation 82574L Gigabit Network Connection
 |           \-02.0-[df]----00.0  Intel Corporation 82574L Gigabit Network Connection
 +-[0000:c8]-+-00.0-[c9]----00.0  Intel Corporation 82574L Gigabit Network Connection
 |           +-01.0-[ca]----00.0  Intel Corporation 82574L Gigabit Network Connection
 |           \-02.0-[cb]----00.0  Intel Corporation 82574L Gigabit Network Connection
 +-[0000:b4]-+-00.0-[b5]----00.0  Intel Corporation 82574L Gigabit Network Connection
 |           +-01.0-[b6]----00.0  Intel Corporation 82574L Gigabit Network Connection
 |           \-02.0-[b7]----00.0  Intel Corporation 82574L Gigabit Network Connection
 \-[0000:00]-+-00.0  Intel Corporation 82G33/G31/P35/P31 Express DRAM Controller
             +-01.0  Red Hat, Inc. QXL paravirtual graphic card
             +-02.0  Red Hat, Inc. Device 000b
             +-03.0  Red Hat, Inc. Device 000b
             +-04.0  Red Hat, Inc. Device 000b
             +-1d.0  Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #1
             +-1d.1  Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #2
             +-1d.2  Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #3
             +-1d.7  Intel Corporation 82801I (ICH9 Family) USB2 EHCI Controller #1
             +-1e.0-[01-02]----01.0-[02]--+-01.0  Red Hat, Inc Virtio network device
             |                            +-02.0  Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) High Definition Audio Controller
             |                            +-03.0  Red Hat, Inc Virtio console
             |                            +-04.0  Red Hat, Inc Virtio block device
             |                            \-05.0  Red Hat, Inc Virtio memory balloon
             +-1f.0  Intel Corporation 82801IB (ICH9) LPC Interface Controller
             +-1f.2  Intel Corporation 82801IR/IO/IH (ICH9R/DO/DH) 6 port SATA Controller [AHCI mode]
             \-1f.3  Intel Corporation 82801I (ICH9 Family) SMBus Controller

The IOMMU support will not be enabled yet as the kernel defaults to leaving it off. To enable it, we must update the kernel command line parameters with grub.

# vi /etc/default/grub
....add "intel_iommu=on"...
# grub2-mkconfig > /etc/grub2.cfg

While intel-iommu device in QEMU can do interrupt remapping, there is no way enable that feature via libvirt at this time. So we need to set a hack for vfio

echo "options vfio_iommu_type1 allow_unsafe_interrupts=1" > \
  /etc/modprobe.d/vfio.conf

This is also a good time to install libvirt and KVM inside the guest

# dnf groupinstall "Virtualization"
# dnf install libvirt-client
# rm -f /etc/libvirt/qemu/networks/autostart/default.xml

Note we’re disabling the default libvirt network, since it’ll clash with the IP address range used by this guest. An alternative would be to edit the default.xml to change the IP subnet.

Now reboot the guest. When it comes back up, there should be a /dev/kvm device present in the guest.

# ls -al /dev/kvm
crw-rw-rw-. 1 root kvm 10, 232 Oct  4 12:14 /dev/kvm

If this is not the case, make sure the physical host has nested virtualization enabled for the “kvm-intel” or “kvm-amd” kernel modules.

The IOMMU should have been detected and activated

# dmesg  | grep -i DMAR
[    0.000000] ACPI: DMAR 0x000000007FFE2541 000048 (v01 BOCHS  BXPCDMAR 00000001 BXPC 00000001)
[    0.000000] DMAR: IOMMU enabled
[    0.203737] DMAR: Host address width 39
[    0.203739] DMAR: DRHD base: 0x000000fed90000 flags: 0x1
[    0.203776] DMAR: dmar0: reg_base_addr fed90000 ver 1:0 cap 12008c22260206 ecap f02
[    2.910862] DMAR: No RMRR found
[    2.910863] DMAR: No ATSR found
[    2.914870] DMAR: dmar0: Using Queued invalidation
[    2.914924] DMAR: Setting RMRR:
[    2.914926] DMAR: Prepare 0-16MiB unity mapping for LPC
[    2.915039] DMAR: Setting identity map for device 0000:00:1f.0 [0x0 - 0xffffff]
[    2.915140] DMAR: Intel(R) Virtualization Technology for Directed I/O

The key message confirming everything is good is the last line there – if that’s missing something went wrong – don’t be mislead by the earlier “DMAR: IOMMU enabled” line which merely says the kernel saw the “intel_iommu=on” command line option.

The IOMMU should also have registered the PCI devices into various groups

# dmesg  | grep -i iommu  |grep device
[    2.915212] iommu: Adding device 0000:00:00.0 to group 0
[    2.915226] iommu: Adding device 0000:00:01.0 to group 1
...snip...
[    5.588723] iommu: Adding device 0000:b5:00.0 to group 14
[    5.588737] iommu: Adding device 0000:b6:00.0 to group 15
[    5.588751] iommu: Adding device 0000:b7:00.0 to group 16

Libvirt meanwhile should have detected all the PCI controllers/devices

# virsh nodedev-list --tree
computer
  |
  +- net_lo_00_00_00_00_00_00
  +- pci_0000_00_00_0
  +- pci_0000_00_01_0
  +- pci_0000_00_02_0
  +- pci_0000_00_03_0
  +- pci_0000_00_04_0
  +- pci_0000_00_1d_0
  |   |
  |   +- usb_usb2
  |       |
  |       +- usb_2_0_1_0
  |         
  +- pci_0000_00_1d_1
  |   |
  |   +- usb_usb3
  |       |
  |       +- usb_3_0_1_0
  |         
  +- pci_0000_00_1d_2
  |   |
  |   +- usb_usb4
  |       |
  |       +- usb_4_0_1_0
  |         
  +- pci_0000_00_1d_7
  |   |
  |   +- usb_usb1
  |       |
  |       +- usb_1_0_1_0
  |       +- usb_1_1
  |           |
  |           +- usb_1_1_1_0
  |             
  +- pci_0000_00_1e_0
  |   |
  |   +- pci_0000_01_01_0
  |       |
  |       +- pci_0000_02_01_0
  |       |   |
  |       |   +- net_enp2s1_52_54_00_10_26_7e
  |       |     
  |       +- pci_0000_02_02_0
  |       +- pci_0000_02_03_0
  |       +- pci_0000_02_04_0
  |       +- pci_0000_02_05_0
  |         
  +- pci_0000_00_1f_0
  +- pci_0000_00_1f_2
  |   |
  |   +- scsi_host0
  |   +- scsi_host1
  |   +- scsi_host2
  |   +- scsi_host3
  |   +- scsi_host4
  |   +- scsi_host5
  |     
  +- pci_0000_00_1f_3
  +- pci_0000_b4_00_0
  |   |
  |   +- pci_0000_b5_00_0
  |       |
  |       +- net_enp181s0_52_54_00_7e_6e_c6
  |         
  +- pci_0000_b4_01_0
  |   |
  |   +- pci_0000_b6_00_0
  |       |
  |       +- net_enp182s0_52_54_00_7e_6e_c7
  |         
  +- pci_0000_b4_02_0
  |   |
  |   +- pci_0000_b7_00_0
  |       |
  |       +- net_enp183s0_52_54_00_7e_6e_c8
  |         
  +- pci_0000_c8_00_0
  |   |
  |   +- pci_0000_c9_00_0
  |       |
  |       +- net_enp201s0_52_54_00_7e_6e_d6
  |         
  +- pci_0000_c8_01_0
  |   |
  |   +- pci_0000_ca_00_0
  |       |
  |       +- net_enp202s0_52_54_00_7e_6e_d7
  |         
  +- pci_0000_c8_02_0
  |   |
  |   +- pci_0000_cb_00_0
  |       |
  |       +- net_enp203s0_52_54_00_7e_6e_d8
  |         
  +- pci_0000_dc_00_0
  |   |
  |   +- pci_0000_dd_00_0
  |       |
  |       +- net_enp221s0_52_54_00_7e_6e_e6
  |         
  +- pci_0000_dc_01_0
  |   |
  |   +- pci_0000_de_00_0
  |       |
  |       +- net_enp222s0_52_54_00_7e_6e_e7
  |         
  +- pci_0000_dc_02_0
      |
      +- pci_0000_df_00_0
          |
          +- net_enp223s0_52_54_00_7e_6e_e8

And if you look at at specific PCI device, it should report the NUMA node it is associated with and the IOMMU group it is part of

# virsh nodedev-dumpxml pci_0000_df_00_0
<device>
  <name>pci_0000_df_00_0</name>
  <path>/sys/devices/pci0000:dc/0000:dc:02.0/0000:df:00.0</path>
  <parent>pci_0000_dc_02_0</parent>
  <driver>
    <name>e1000e</name>
  </driver>
  <capability type='pci'>
    <domain>0</domain>
    <bus>223</bus>
    <slot>0</slot>
    <function>0</function>
    <product id='0x10d3'>82574L Gigabit Network Connection</product>
    <vendor id='0x8086'>Intel Corporation</vendor>
    <iommuGroup number='10'>
      <address domain='0x0000' bus='0xdc' slot='0x02' function='0x0'/>
      <address domain='0x0000' bus='0xdf' slot='0x00' function='0x0'/>
    </iommuGroup>
    <numa node='2'/>
    <pci-express>
      <link validity='cap' port='0' speed='2.5' width='1'/>
      <link validity='sta' speed='2.5' width='1'/>
    </pci-express>
  </capability>
</device>

Finally, libvirt should also be reporting the NUMA topology

# virsh capabilities
...snip...
<topology>
  <cells num='3'>
    <cell id='0'>
      <memory unit='KiB'>4014464</memory>
      <pages unit='KiB' size='4'>1003616</pages>
      <pages unit='KiB' size='2048'>0</pages>
      <pages unit='KiB' size='1048576'>0</pages>
      <distances>
        <sibling id='0' value='10'/>
        <sibling id='1' value='20'/>
        <sibling id='2' value='20'/>
      </distances>
      <cpus num='4'>
        <cpu id='0' socket_id='0' core_id='0' siblings='0'/>
        <cpu id='1' socket_id='1' core_id='0' siblings='1'/>
        <cpu id='2' socket_id='2' core_id='0' siblings='2'/>
        <cpu id='3' socket_id='3' core_id='0' siblings='3'/>
      </cpus>
    </cell>
    <cell id='1'>
      <memory unit='KiB'>2016808</memory>
      <pages unit='KiB' size='4'>504202</pages>
      <pages unit='KiB' size='2048'>0</pages>
      <pages unit='KiB' size='1048576'>0</pages>
      <distances>
        <sibling id='0' value='20'/>
        <sibling id='1' value='10'/>
        <sibling id='2' value='20'/>
      </distances>
      <cpus num='2'>
        <cpu id='4' socket_id='4' core_id='0' siblings='4'/>
        <cpu id='5' socket_id='5' core_id='0' siblings='5'/>
      </cpus>
    </cell>
    <cell id='2'>
      <memory unit='KiB'>2014644</memory>
      <pages unit='KiB' size='4'>503661</pages>
      <pages unit='KiB' size='2048'>0</pages>
      <pages unit='KiB' size='1048576'>0</pages>
      <distances>
        <sibling id='0' value='20'/>
        <sibling id='1' value='20'/>
        <sibling id='2' value='10'/>
      </distances>
      <cpus num='2'>
        <cpu id='6' socket_id='6' core_id='0' siblings='6'/>
        <cpu id='7' socket_id='7' core_id='0' siblings='7'/>
      </cpus>
    </cell>
  </cells>
</topology>
...snip...

Everything should be ready and working at this point, so lets try and install a nested guest, and assign it one of the e1000e PCI devices. For simplicity we’ll just do the exact same install for the nested guest, as we used for the top level guest we’re currently running in. The only difference is that we’ll assign it a PCI device

# cd /var/lib/libvirt/images
# wget -O f25x86_64-boot.iso https://download.fedoraproject.org/pub/fedora/linux/releases/25/Server/x86_64/os/images/boot.iso
# virt-install --name f25x86_64 --ram 2000 --vcpus 8 \
    --file /var/lib/libvirt/images/f25x86_64.img --file-size 10 \
    --cdrom f25x86_64-boot.iso --os-type fedora23 \
    --hostdev pci_0000_df_00_0 --network none

If everything went well, you should now have a nested guest with an assigned PCI device attached to it.

This turned out to be a rather long blog posting, but this is not surprising as we’re experimenting with some cutting edge KVM features trying to emulate quite a complicated hardware setup, that deviates from normal KVM guest setup quite a way. Perhaps in the future virt-install will be able to simplify some of this, but at least for the short-medium term there’ll be a fair bit of work required. The positive thing though is that this has clearly demonstrated that KVM is now advanced enough that you can now reasonably expect to do development and testing of features like NUMA and PCI device assignment inside nested guests.

The next step is to convince someone to add QEMU emulation of an Intel SRIOV network device….volunteers please :-)